

DAB-19BBA203

Seat No. _____

B. B. A. (Sem. II) (CBCS) (W.E.F. 2019) Examination April – 2022

Mathematics

(Advance Techniques of Business Mathematics) (New Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) All questions carry equal marks.
- (2) Attempt any four questions.
- 1 (a) Explain: Rules of Determinants.

10

(b) Solve the following equation using determinants by **7.5** Cramer's method:

$$\frac{2}{x} + \frac{3}{y} = 2$$
, $\frac{4}{x} + \frac{9}{y} = 5$

- 2 Solve the following equations by Cramer's rule : 17.5 x+y+z=6, 2x+y+z=7, 3x+2y+z=10.
- 3 (a) Define: Zero matrix, Unit matrix, Transpose of a matrix, Row matrix.
 - (b) Find inverse of the following matrix: 7.5

$$A = \begin{bmatrix} 5 & 3 & 1 \\ 2 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

4 Solve the following equation using inverse matrix method:

1

$$x + y + z = 7$$
, $x + 2y + 3z = 16$, $x + 3y + 4z = 22$.

5 Evaluate the following limits:

17.5

(1)
$$\lim_{x \to 4} \frac{\sqrt{5-x}-1}{x-4}$$

DAB-19BBA203]

[Contd..

$$(2) \quad \lim_{x \to \infty} \frac{2^{4x} - 2^{3x}}{x}$$

(3)
$$\lim_{x \to 1} \frac{x^3 + x^2 + x - 3}{x - 1}$$

(4)
$$\lim_{n\to\infty} \frac{\sum n}{(n+1)(n+2)}$$

$$(5) \quad \lim_{n\to\infty} \left(\frac{n-2}{n+3}\right)^n$$

6 Evaluate the following limits:

(1)
$$\lim_{x \to 2} \frac{x^5 - 32}{x - 2}$$

(2)
$$\lim_{x \to \infty} \frac{4x^2 + 2x + 10}{2x^2 + x + 1}$$

(3)
$$\lim_{x \to 1} \frac{\sqrt{x+2} - \sqrt{3}}{x-1}$$

(4)
$$\lim_{x \to 0} \frac{3^{2x} + 2^{3x} - 2}{x}$$

(5)
$$\lim_{x \to 2} \frac{\sqrt{x+7} - 3}{\sqrt{x+2} - 2}$$

7 (a) Explain Annuity.

10

- (b) If Rs. 1,200 amounts to Rs. 1,488 after 3 years, find 7.5 the simple rate of interest.
- 8 (a) Explain: Sinking fund.

10

(b) Rs. 4,000 is deposited at 8% compounded quarterly **7.5** for one year. Find the effective annual rate of interest.
